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SUMMARY

Identifying genes that are differentially expressed between classes of samples is an important objective
of many microarray experiments. Because of the thousands of genes typically considered, there is a
tension between identifying as many of the truly differentially expressed genes as possible, but not too
many genes that are not really differentially expressed (false discoveries). Controlling the proportion of
identified genes that are false discoveries, the false discovery proportion (FDP), is a goal of interest. In
this paper, two multivariate permutation methods are investigated for controlling the FDP. One is based
on a multivariate permutation testing (MPT) method that probabilistically controls the number of false
discoveries, and the other is based on the Significance Analysis of Microarrays (SAM) procedure that
provides an estimate of the FDP. Both methods account for the correlations among the genes. We find
the ability of the methods to control the proportion of false discoveries varies substantially depending
on the implementation characteristics. For example, for both methods one can proceed from the most
significant gene to the least significant gene until the estimated FDP is just above the targeted level
(‘top-down’ approach), or from the least significant gene to the most significant gene until the estimated
FDP is just below the targeted level (‘bottom-up’ approach). We find that the top-down MPT-based method
probabilistically controls the FDP, whereas our implementation of the top-down SAM-based method does
not. Bottom-up MPT-based or SAM-based methods can result in poor control of the FDP. Published in
2007 by John Wiley & Sons, Ltd.
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1. INTRODUCTION

Analysis of gene expression profiles can involve tens of thousands of genes. To recognize the signal
amid the noise leads to a multiple comparisons problem: when examining very many statistics,
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some will appear large and interesting even when there is nothing truly happening. In this paper we
will focus on identifying genes that are differentially expressed between two classes of expression
profiles, e.g. microarray expression values obtained from normal tissue versus tumour biopsies.
Such gene identification is an important goal of many microarray investigations [1]. The idea
is to find as many genes that are truly differentially expressed while controlling the number of
(‘null’) genes that are identified that are not truly differentially expressed (false positives or false
discoveries). There is a trade-off involved in procedures for identifying differentially expressed
genes: the more stringent the procedure is in keeping the number of false discoveries low, the less
sensitivity there will be to detect truly differentially expressed genes. For example, suppose one
uses a Bonferroni procedure and identifies genes from a set of 10 000 when their p-value from
a two-sample univariate statistical test is less than 0.05/10 000. This procedure will result in one
or more false discoveries less than 5 per cent of the time. On the other hand, suppose one used a
procedure that did not control for multiple comparisons and identified all genes whose p-values
were less than 0.05. Then, one could expect up to 500 (= 0.05× 10 000) false discoveries. The
trade-off is that the Bonferroni procedure will identify many fewer truly differentially expressed
genes than the latter procedure.

A compromise between insisting on no false discoveries and making no adjustment for multiple
comparisons is to allow for some false discoveries, but not too many. For example, suppose we
identified all genes whose p-values were less than 0.001. With 10 000 genes, one would expect
10 false discoveries on average using this procedure if all the genes were null. Therefore, since
some of the 10 000 genes are expected to be truly differentially expressed (i.e. non-null), the 10
false discoveries can be viewed as an upper bound for the expected number of false discoveries.
Rather than controlling for the expected number of false discoveries, Benjamini and Hochberg [2]
discussed controlling the expected false discovery proportion (FDP), which they called the false
discovery rate (FDR). The FDP for a given set of identified genes is the proportion of genes in that
set that are truly null. That is, FDP= V/D, where D is the number of genes identified and V is the
number of these genes that are null. (The FDP is defined to be zero when no genes are identified,
i.e. when D = 0.) Note that FDR= E(FDP) is a constant associated with the experimental design
and analysis method, whereas the FDP is a random variable that will change from realization to
realization of the data.

Since the FDP is a random variable, we would like to know in what way it is probabilistically
controlled by an analysis method. Ideally, we would like to apply a procedure in a way that we can
be 1− � confident (e.g. 1− � = 80 per cent confident) that the FDP (for the set of identified genes
S) is less than � (e.g. � = 10 per cent). In obvious notation, the condition is P(FDP(S)��)�1− �.
This provides more control than bounding the FDR [3], which has been the focus of much of the
previous work in this area; see Ge et al. [4] and Li et al. [5] for extensive reviews.

Many methods have been proposed for finding differentially expressed genes. For this investi-
gation, we wanted to examine non-parametric multivariate permutation methods which claim to
provide control over false discoveries in a manner that could account for correlations among the
genes and not require a large sample size (of arrays). We will not discuss analysis of variance
models [6] or empirical Bayes methods [7–9] for expression data, which would be expected to
be preferable when the number of arrays is very small and the distributional assumptions are
satisfied [10].

One of the multivariate permutation procedures we consider is based on extensions of multi-
variate permutation tests (MPTs) that control for no false positives [11, 12] or a fixed number of
false positives [3]. The other procedure we consider is an extension of Significance Analysis of
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Microarray (SAM) [13] that estimates the number of false positives for fixed cut-offs of functions
of average class differences. SAM is a widely used procedure; the SAM paper [13] has been ref-
erenced more than 1750 times as of this date (ISI Web of Science). We describe the procedures in
the next section and in Section 3 we evaluate their FDP-controlling properties. Section 4 presents
an example involving genes that are differentially expressed in different types of breast cancer
tumours. We end with a brief discussion of extensions to experimental designs other than the
unpaired two-class comparison.

2. METHODS

Both the MPT-based methods and the SAM-based methods involve permuting the class labels to
form new data sets on which various quantities are computed. Quantiles (e.g. the 90th percentile)
of the permutation distribution of these quantities are then used to identify differentially expressed
genes. We focus on the methods for unpaired two-class comparisons; other experimental designs
are briefly considered in the Discussion.

2.1. MPT-based methods

MPT-based methods are based on the null hypothesis that the multivariate distribution of expression
values for the null genes is the same in the two classes, with n arrays in one class and m arrays
in the other class. We describe the method here; detailed justification is given by Korn et al. [3]
and software is available [14]. First, calculate the two-sample t-statistic test for comparing the two
classes for each gene i

ti = xi − yi
�̂i

√
1/ni + 1/mi

(1)

where xi and yi are the means of the gene expression values (suitably normalized) for each class,
�̂2i is the standard pooled variance estimator, and ni and mi are the available sample sizes in the two
classes (which may be less than n and m because of missing data), all for gene i , where there are
K genes in all. Let p1, p2, . . . , pK be the normal-theory parametric p-values associated with these
t-statistics and p(1)�p(2)� · · · �p(K ) be the ordered p-values. Consider B permutations of the
class labels among the arrays. (Let B ≡ (n + m)!/(n!m!), the number of possible permutations, if
B is not too large a number. Otherwise, let B = 1000 random permutations.) For each permutation,
calculate the two-sample t-statistic p-value for each of the genes using the permuted class labels and
order the p-values from smallest to largest. Let p(1), j�p(2), j� · · · �p(K ), j denote these ordered
p-values for the j th permutation, j = 1, 2, . . . , B. Suppose we desire to identify a set of genes
so that we could be 100(1 − �) per cent confident that there were at most u false discoveries in
the set. This can be accomplished by identifying all genes whose pi is less than the (u + 1)st
smallest p-value in 100� per cent of the permutations [3]. That is, one identifies all genes whose
pi<MINu(�), where MINu(�) is the 100�th percentile of {p(u+1),1, p(u+1),2, . . . , p(u+1),B}.
The MPT controls the number of false discoveries with 100(1−�) per cent confidence regardless

of the underlying distribution of the data; see the Discussion. However, P(FDP��) is not necessarily
monotonic for nested gene lists {i |p(i)�c} for increasing c. That is, decreasing the significance level
to identify differentially expressed genes does not mean decreasing the probability P(FDP��).
In attempting to use the MPT to control the FDP, there are two ways to proceed, a ‘top-down’
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Table I. Hypothetical data demonstrating identification of gene list of 13 genes controlling the
FDP�10 per cent (�= 0.10) with 80 per cent confidence.

Gene Allowable errors Observed MIN0(0.2) MIN1(0.2)
(i) ‖i�‖ p-value p(i) (allows 0 errors) (allows 1 error) . . .

(1) 0 0.0001 0.0013 0.0018 . . .
(2) 0 0.0001 0.0013 0.0018 . . .
(3) 0 0.0001 0.0013 0.0018 . . .
(4) 0 0.0002 0.0013 0.0018 . . .
(5) 0 0.0002 0.0013 0.0018 . . .
(6) 0 0.0005 0.0013 0.0018 . . .
(7) 0 0.0006 0.0013 0.0018 . . .
(8) 0 0.0007 0.0013 0.0018 . . .
(9) 0 0.0007 0.0013 0.0018 . . .

(10) 1 0.0012 0.0013 0.0018 . . .
(11) 1 0.0012 0.0013 0.0018 . . .
(12) 1 0.0016 0.0013 0.0018 . . .
(13) 1 0.0017 0.0013 0.0018 . . .
(14) 1 0.0025 0.0013 0.0018 . . .
(15) 1 0.0027 0.0013 0.0018 . . .

...
...

...
... . . .

approach and a ‘bottom-up’ approach. Consider a list of the genes ordered by their observed
p-values with the most significant gene (smallest p-value) at the top of the list (Table I). Along
with a column of these p-values, the next columns contain the values MIN0(�), MIN1(�), etc.,
where � = 0.2 in Table I. These column values represent the p-value cut-offs for identifying genes
with allowance for 0 errors, 1 error, etc. In the top-down approach, we start at the top of the
list and work down as long as the allowable number of false discoveries divided by the number
of genes identified is less than �: if genes (1), (2), . . . , (i − 1) have already been identified, we
identify gene (i) if either p(i)<MIN‖i�‖(�) or ‖i�‖>‖(i − 1)�‖ (‘automatic identification’), where
‖x‖ denotes the greatest integer less than or equal to x . In the hypothetical example given in
Table I, if we allowed 0 false discoveries (with 80 per cent confidence) then we would identify the
first 11 genes; if we allowed one false discovery we would identify the first 13 genes. To control
the FDP<10 per cent, proceeding from the top we sequentially can identify the first nine genes
by comparing the observed p-value with the fourth column MIN0(0.2). (Bolded numbers identify
which columns are to be used for comparison with the observed p-values.) The 10th gene is then
an automatic identification. (Heuristically, automatic identification is used because if we are 80
per cent confident that there are no false discoveries in the first nine genes, then we are automatically
80 per cent confident that there are �1 false discoveries in the first 10 genes.) Genes 11–13 are
identified because their p-values are less than MIN1(0.2) (bolded numbers), and the identification
procedure stops.

In the bottom-up approach, we start at the bottom of the list of genes ordered by increasing
p-values, and work up the list as long as the allowable number of false discoveries divided by
the number of genes identified is less than �: genes (1), (2), . . . , (i) are identified where i is the
largest index such that p(i)<MIN‖i�‖(�). Table II gives a hypothetical example where the bottom-
up approach identifies 12 genes and the top-down approach identifies four genes. The bottom-
up approach will practically always identify at least as many genes as the top-down approach.
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Table II. Hypothetical data demonstrating identification of gene list of four genes
using top-down approach or 12 genes using bottom-up approach controlling the

FDP�10 per cent with 80 per cent confidence.

Gene Allowable errors Observed MIN0(0.2) MIN1(0.2)
(i) ‖i�‖ p-value p(i) (allows 0 errors) (allows 1 error) . . .

(1) 0 0.0001 0.0005 0.0018 . . .
(2) 0 0.0001 0.0005 0.0018 . . .
(3) 0 0.0002 0.0005 0.0018 . . .
(4) 0 0.0004 0.0005 0.0018 . . .
(5) 0 0.0007 0.0005 0.0018 . . .
(6) 0 0.0008 0.0005 0.0018 . . .
(7) 0 0.0008 0.0005 0.0018 . . .
(8) 0 0.0010 0.0005 0.0018 . . .
(9) 0 0.0011 0.0005 0.0018 . . .

(10) 1 0.0012 0.0005 0.0018 . . .
(11) 1 0.0015 0.0005 0.0018 . . .
(12) 1 0.0017 0.0005 0.0018 . . .
(13) 1 0.0025 0.0005 0.0018 . . .
(14) 1 0.0027 0.0005 0.0018 . . .
(15) 1 0.0030 0.0005 0.0018 . . .

...
...

...
... . . .

The one possible exception is when the top-down procedure stops at an automatic rejection and
the bottom-up procedure identifies one less gene.

The top-down approach was used previously [3]; consideration of the bottom-up approach is
considered for the first time in this paper.

2.2. SAM-based methods

The SAM procedure is quite complex. We present the main ideas here for the two-sample problem
and refer the reader to Tusher et al. [13] and Chu et al. [15] for details. The score for gene i is
the statistic

di = xi − yi
s0 + si

(2)

where si = �̂i
√
1/ni + 1/mi is the standard error of the numerator. The score (2) is precisely a

two-sample t-statistic (1) except for s0, which is calculated to minimize the coefficient of variation
of the di . In calculating s0, SAM uses a grid of 100 cut-points to define windows of increasing
values of si ; see Chu et al. [15]. If there are K�100 genes, then s0 is undefined and we take it to be
zero in what follows. We will also present results for a SAM-based method that sets s0, = 0 (‘SAM
without s0’) for K>100. The score statistics are ordered for the K genes: d(1)�d(2)� · · · �d(K ).
The microarray data are permuted as in the MPT-based method, and the d(i) are calculated for each
permuted data set, denoted d(i), j for the j th permuted data set. (The quantity s0 is not recalculated
for each permuted data set, but s0 from the original data set is used throughout.) Let d(i) be
the mean of the d(i), j across the permuted data sets. For example, d(K ) is the mean across the
permuted data sets of the largest scores. For a fixed ‘tuning parameter’ �, genes are identified as
follows. Find the smallest i1 such that d(i1) and d(i1) are positive and such that d(i1) − d(i1)>�.
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Identify genes corresponding to d(i1), d(i1+1), . . . , d(K ) as ‘positive’.Similarly, find the largest i2
such that d(i2) and d(i2) are negative and such that d(i2) − d(i2)>�. Identify genes corresponding
to d(1), d(2), . . . , d(i2) as ‘negative’.

To estimate the number of false positives for a given �, SAM uses the following procedure.
First, define cutup(�) = d(i1) and cutlow(�) = d(i2). (The cutup(�) (cutlow(�)) remains undefined if
there are no positive (negative) genes identified.) For each permuted data set, let c∗ be the number
of genes with di�cutup(�) plus the number of genes with di�cutlow(�). Across the permutations,
calculate the 90th percentile of the c∗. (The SAM software [15] also allows the use of the median
of the c∗, and the original description of SAM [13] used the mean of the c∗.) Multiply this 90th
percentile by an estimate �̂0 of the proportion of true null genes; see Chu et al. [15] for a description
of �̂0. The product is taken as the estimate of the number of false positives. The FDR is estimated
by this estimate of false discoveries divided by the number of identified genes. The number of
identified genes, estimated number of false positives, and estimated FDR can be displayed for a
grid of � values. The SAM software [15] chooses the grid to be 100 values; in our simulations
we choose the 100 values to correspond to the 100 percentiles (first percentile, second percentile,
etc.) of the |d(i) − d(i)|.

Although no probability claims are made for the method in Tusher et al. [13], it is of interest
to assess the performance of SAM for controlling the FDP by choosing a � so that the estimated
FDR from SAM is ��. Let �1��2� · · ·��100 be the grid values of �. A top-down method of
gene identification chooses the genes identified with �i , where i is the smallest index such that the
estimated FDR from SAM associated with �i is �� and the estimated FDR from SAM associated
with �i+1 is >�. A bottom-up method of gene identification chooses the genes identified with �i ,
where i is the largest index such that the estimated FDR from SAM associated with �i is �� and
the estimated FDR from SAM associated with �i+1 is >�. Note that the bottom-up method will
always identify at least as many genes as the top-down method, because a smaller � identifies
more genes.

The bottom-up approach is one of the approaches that has been suggested for SAM [16]; the
top-down approach is considered for the first time in this paper.

3. RESULTS

We consider some of the properties of the MPT-based and SAM-based methods for controlling the
FDP. For the simulations, we generally assume that: (a) there are the same number of observations
in each group and no missing data (ni =mi = n); (b) there are 100, 1000, or 5000 genes (K = 100,
1000, or 5000); (c) �= 10 per cent; and (d) the observations are normally distributed. In particular,
the observations are normally distributed with, for gene i , the same variance for each group
(denoted �2i ) and mean shift between the groups being �i . The �2i are sampled from a distribution
that is 0.25 + X/6.67, with X having a chi-squared distribution with 5 degrees of freedom. The
0.25 term is used so that the variances will not be unrealistically close to zero, and the 6.67 factor
is used so that the distribution has mean 1. When in a simulation some genes are differentially
expressed (�i �= 0), we will express the differential expression in terms of the effect size (�i/�i ) and
specify that the distribution of the �2i is the same for differentially expressed and non-differentially
expressed genes. (With these specifications, the MPT-based simulation results do not depend on
the distribution of the �2i .) Unless otherwise specified, the correlation between the genes is taken
to be 0. All simulations are based on 10 000 repetitions. The simulations considered are designed
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Table III. Simulated proportion of times true FDP is greater than 10 per cent
using MPT-based methods (80 per cent confidence) or SAM-based methods

(90th percentile) for two-class problem under global null hypothesis.

Top-down or bottom-up SAM MPT

Top-down 0.173 0.199
Bottom-up 0.173 0.199

Note: sample size n = 30 per group, K = 100 independently normally distributed
genes.

to demonstrate, in settings as simple as possible, the properties that are noted heuristically for the
methods.

The first property to note is that using the SAM-based 90th percentile method, the probability
that the FDP is larger than the specified � can be as large as approximately 20 per cent, not the 10
per cent one might expect because the 90th percentile is used. This doubling of what one might
think is the error rate is because of the one-sided nature of SAM [17]. The simulation results given
in Table III under the global null hypothesis and with n = 30 and K = 100 genes demonstrate this;
the SAM-based method yields a FDP>� (= 10 per cent) in 17.3 per cent of the simulations. In
all the simulations that follow we will therefore compare the 90th percentile SAM-based method
with the 80 per cent confidence MPT-based method.

As noted in Section 2, the SAM software uses a grid of 100 � values. If, as typically is the
case, there are more than 100 genes, there is the possibility of using a larger number of � values
in the grid. Increasing the number of �’s in the grid (by adding more �’s to the existing �’s) can
increase the number of genes identified by the bottom-up approach; for the top-down approach it
can result in either an increase or decrease in the number of identified genes. Choosing K�’s as
the maximum number is reasonable because choosing more will not result in any differences in
the genes identified. It is not clear how choosing 100 versus K�’s will affect the properties of the
SAM-based method for controlling the FDP. Table IV presents simulation results evaluating the
effect on the SAM-based method of using 100 �’s versus 1000 �’s when K = 1000 and 12 genes
are non-null and the rest are null. With 1000 �’s the average number of non-null genes identified
is 12.0. In fact, these 12 genes were identified in �9994 of the 10 000 simulated data sets by
all of the SAM-based methods with 1000 �’s. With 100 �’s, only 10.1 of the 12 non-null genes
were identified on average, and in <1 per cent of the simulated data sets all 12 non-null genes
were identified. In all the simulations that follow, we set the number of �’s equal to the number
of genes, K . We note in passing that the MPT-based method also identified all 12 non-null genes
for all the simulated data sets for this simulation.

As we mentioned above, the SAM-based methods would be expected to result in the FDP>�
no more than 20 per cent of the time when the 90th percentile method is used. Although we
demonstrated this in Table III under the global null hypothesis, this does not have to be the case
when there are some non-null genes as the following heuristic argument shows. Suppose out of
the K genes, K+ are highly differentially expressed and K0 are null. The SAM-based method will
practically always identify at least the K+ highly differentially expressed genes. Now, consider
the distribution of the score for the gene among the K0 null genes that is observed to have
the most differential expression. This distribution will be the most extreme distribution from K0
null distributions. However, it will be compared to the reference permutation distribution of the
(K+ + 1) most extreme distribution out of K null distributions. This permutation distribution will
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Table IV. Simulated proportion of times true FDP is greater than 10 per cent and average number
of non-null genes identified using MPT-based methods (80 per cent confidence) or SAM-based

methods (90th percentile) for two-class problem with 12 non-null genes.

SAM
(SAM without s0 in parentheses)

100 �’s 1000 �’s MPT

Number of Number of Number of
Top-down or FDP>10 non-null FDP>10 non-null FDP>10 non-null
bottom-up per cent identified per cent identified per cent identified

Top-down 0.000 10.1 0.223 12.0 0.198 12.0
(0.000) (10.1) (0.229) (12.0)

Bottom-up 0.000 10.1 0.223 12.0 0.198 12.0
(0.000) (10.1) (0.229) (12.0)

Note: sample size n = 30 per group, K = 1000 independently normally distributed genes, six genes with effect
size of 2 and six genes with effect size of −2.

Table V. Simulated proportion of times true FDP is greater than 10 per cent using
MPT-based methods (80 per cent confidence) or SAM-based methods (90th percentile)

for two-class problem with eight non-null genes.

SAM
Top-down or (SAM without s0 in
bottom-up Number of genes in parentheses) MPT

Top-down 100 0.361 0.188
Bottom-up 100 0.432 0.276
Top-down 1000 0.204 0.202

(0.212)
Bottom-up 1000 0.306 0.299

(0.312)

Note: sample size n = 30 per group, K = 100 or 1000 independently normally distributed genes,
four genes with mean shift of 2 and four genes with mean shift of −2.

be less extreme than the observed distribution. For example, the ninth most extreme distribution
out of 100 null distributions is less extreme than the most extreme distribution out of 92 null
distributions. The end result is that the SAM-based method will reject null genes too often. This
is demonstrated in Table V where the error rates for the SAM-based method are 36.1 and 43.2
per cent instead of being �20 per cent. With K = 1000, the SAM-based method performs better
than with K = 100 (see Table V): using a reference distribution of the ninth largest out of 1000
for an actual distribution of the largest out of 992 is not as large a problem as using a reference
distribution of the ninth largest out of 100 for an actual distribution of the largest out of 92. In fact,
the top-down SAM-based method has an acceptable error rate for this situation when K = 1000.
However, when correlation is added to the genes, neither the top-down or bottom-up approach of
the SAM-based method has acceptable error rates with K = 1000 or 5000 (Table VI). Changing
the sample size from n = 30 per group to n = 50 per group or n = 10 per group, or making the
sample size 30 in one group and 50 in the other does not improve the behaviour of the SAM-based
method, with the results being almost the same as the results given in Table VI (data not shown).
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Table VI. Simulated proportion of times true FDP is greater than 10 per cent
using MPT-based methods (80 per cent confidence) or SAM-based methods (90th

percentile) for two-class problem with eight non-null genes.

SAM
Top-down or (SAM without s0 in
bottom-up Number of genes in parentheses) MPT

Non-null genes all in one cluster
Top-down 1000 0.267 0.198

(0.268)
Bottom-up 1000 0.287 0.271

(0.289)
Top-down 5000 0.244 0.195

(0.238)
Bottom-up 5000 0.271 0.277

(0.268)

Non-null genes all in different clusters
Top-down 1000 0.265 0.198

(0.268)
Bottom-up 1000 0.285 0.271

(0.289)
Top-down 5000 0.244 0.195

(0.238)
Bottom-up 5000 0.272 0.278

(0.268)

Note: sample size n = 30 per group, K = 1000 or 5000, clusters of 50 genes with
correlation = 0.5 within cluster, normally distributed genes, four genes with effect size
of 2 and four genes with effect size of −2.

Tables V and VI demonstrate a potential problem with the bottom-up approach for both the
SAM-based and MPT-based methods and the top-down approach for the SAM-based method;
these approaches can violate the condition FDP�10 per cent more than 20 per cent of the
time. This simulation is meant to be a difficult test for the methods, for if even one null
gene is identified in addition to the eight non-null genes, the FDP will be greater than 10
per cent. A less difficult test is offered by the scenario in which 100 genes are non-null (Ta-
ble VII), as the methods will still satisfy FDP�10 per cent even with 10 null genes identi-
fied. The SAM-based method depends on the signs (positive or negative) of the non-null genes
(the MPT-based method does not), which is why two scenarios are considered in Table VII.
The condition FDP�10 per cent is violated less than 20 per cent of the time in the Table VII
simulations.

With smaller sample sizes than n = 30 per group, the advantages of pooling variability
information (as SAM does) should be greater. In these situations, one might also consider pool-
ing variability information for the MPT-based method also, e.g. using the method of Wright and
Simon [18].

Although the focus of this paper is on controlling the FDP, the simulations can also be used
to evaluate the FDR by averaging the FDPs across the simulated data sets. A special case is the
global null hypothesis (Table III), for which the FDP can only be zero or one. In this special
case, the simulated FDR is the same as the simulated proportion of times the true FDP is greater
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Table VII. Simulated proportion of times true FDP is greater than 10 per cent
and average number of non-null genes identified using MPT-based methods (80
per cent confidence) or SAM-based methods (90th percentile) for two-class problem

with 100 non-null genes.

SAM
(SAM without s0 in parentheses)

50 genes shift= +�i 90 genes shift= +�i MPT

50 genes shift= −�i 10 genes shift= −�i 100 genes |shift| =�i

Number of Number of Number of
Top-down or FDP>10 non-null FDP>10 non-null FDP>10 non-null
bottom-up per cent identified per cent identified per cent identified

Top-down 0.128 84.5 0.096 85.9 0.122 85.5
(0.149) (85.6) (0.114) (86.6)

Bottom-up 0.135 84.8 0.103 86.0 0.129 85.7
(0.159) (85.7) (0.123) (86.8)

Note: sample size n = 30 per group, K = 1000 independently normally distributed genes.

than 10 per cent, i.e. the proportions given in Table III. For the simulations in Tables IV–VII, the
simulated FDR is always less than 10 per cent (data not shown).

4. EXAMPLE

Hedenfalk et al. [19] analysed cDNA microarray profiles from breast cancer tumours from patients
who had a family history of breast or ovarian cancer and whose tumours had BRCA1 mutations
(seven patients) or BRCA2 mutations (eight tumours from seven patients), as well as tumours from
seven patients with sporadic cases of breast cancer. We compare the BRCA1 tumours (n = 7) to
the non-BRCA1 tumours (n = 15), and the BRCA2 tumour (n = 8) to the non-BRCA2 tumours
(n = 14) for the 3226 genes that met quality control standards. The data are available online
(http://linus.nci.nih.gov/∼brb/book.html) and additionally described elsewhere [20]. We use a
target FDP�10 per cent and 80 per cent confidence level of the MPT-based methods and the 90th
percentile for the SAM-based methods with 3226 �’s. Because these permutation-based methods
can yield variable results depending upon the random permutations, we performed each method
11 times (with 1000 permutations each time) and report here the median resulting number of
identified genes for each method.

The methods identified roughly similar numbers of genes for both comparisons (Table VIII). As
both the MPT-based method and the SAM (without s0)-based method are using the same ordering
of the genes (based on the two-sample t-statistic), the genes identified by these methods are subsets
of each other. For example, the list of the 56 genes identified by top-down MPT-based method
for the BRCA1 comparison is a subset of the list of 63 genes identified by bottom-up MPT-based
method, which in turn is a subset the list of the 68 genes identified by the top-down or bottom-up
SAM (without s0)-based method. There is an overlap with the genes identified by the SAM-based
method, but the overlap is not complete. For example, of the 72 genes identified by SAM, 59 of
these were also identified by SAM without s0.
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Table VIII. Number of genes identified for Hedenfalk et al. [19] data for two comparisons
using various multivariate permutation-based methods.

Top-down or BRCA1 versus BRCA2 versus
Method bottom-up non-BRCA1 non-BRCA2

MPT (80 per cent confidence) Top-down 56 67
Bottom-up 63 82

SAM without s0 (90th Top-down 68 52
percentile, 3226 �’s) Bottom-up 68 52
SAM (90th percentile, Top-down 72 70
3226 �’s) Bottom-up 72 77

Based on the simulations presented in Tables V and VI, we would recommend using the gene
lists identified by the top-down MPT-based method because this is the only method that guarantees
the putative confidence level.

5. DISCUSSION

In our implementation of the MPT and SAM-based methods for controlling the FDP we have used
parametric p-values from two-sample t-statistics to rank the genes for MPT-based methods and
parametric-type scores to rank the genes for the SAM-based methods. However, since the analyses
are based on the multivariate permutation distribution and the p-values and scores are solely used
to rank the genes in the observed and permuted data sets, the inference is, in fact, non-parametric
provided that the multivariate distribution of the null gene values is the same in the two classes.
Nevertheless, one could consider using a non-parametric statistic to rank the genes, for example,
the Wilcoxon rank-sum test for an unpaired two-class comparison [21]. Although we believe that
generally the use of parametric statistics rather than non-parametric statistics will lead to more
non-null genes being identified, the choice of what is the best ranking statistic to use in which
applications is an area of further research.

It is straightforward to apply the MPT-based methods to designs other than the unpaired two-
class comparisons thus far discussed. One need only to apply an appropriate statistical method that
yields a p-value for each gene and permute the labels of the microarray profiles consistently with
the experimental design. For example, for a paired two-class comparison, one would use a paired
t-statistic instead of the unpaired t-statistic, and one would permute the class labels within pairs
(2n possible permutations for n pairs of samples). For a regression problem where each microarray
is associated with a single continuous covariate x , one could use a linear regression coefficient for
the i th gene divided by its standard error instead of the unpaired t-statistic, and permute all the class
labels among the x’s (n! possible permutations for n samples). For a C class problem with C = 3,
one would use a standard F statistic=[SSb/(3− 1)]/[SSw/(n− 3)] from the analysis of variance,
where SSb is the between-class sum of squares and SSw is the within-class sum of squares for the
i th gene. The microarray labels are permuted among the three classes ((n1 +n2 +n3)!/(n1!n2!n3!)
possible permutations with nc samples in the cth class, n = n1 + n2 + n3). Finally, one may not
want to use p-values to rank the genes in more complex problems [22].

With the SAM-based methods, the method of performing the permutations is identical to the
method for the MPT-based methods. However, the choice of the score for ranking the genes is
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not canonical even for simple problems; see Chu et al. [15] for their recommended score choices
for the paired two-class comparison and linear regression, and Tusher et al. [13] for a recommend
score for a K class problem. We note that for any reasonable score for the K class problem with
K�3, the score will be unidirectional. That is, larger values of the score will represent larger
class differences and smaller values will represent smaller class differences. This is distinct from
the two-class problems where large or small values of the score represent class differences, and
in distinction to the regression problem where large or small values of the score represent an
association between the gene expression and covariate. Because of this distinction, the properties
of the SAM-based methods for FDP control may be quite different for the K class problem than
for the other types of experimental design. Therefore, the properties and results of the SAM-based
methods discussed in this paper for the two-class comparison may not be relevant for the K
class problem. This is not an issue for the MPT-based methods because they are always based on
two-sided p-values.

In summary, if one desires to control with a specified confidence that the FDP is less than a
specified value, then we recommend using the top-down MPT-based method.
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